Product Code Database
Example Keywords: medical -software $17
   » » Wiki: Circular Orbit
Tag Wiki 'Circular Orbit'.
Tag

A circular orbit is an with a fixed distance around the ; that is, in the shape of a . In this case, not only the distance, but also the speed, , and are constant. There is no or apoapsis. This orbit has no .

Listed below is a circular orbit in or celestial mechanics under standard assumptions. Here the centripetal force is the gravitational force, and the axis mentioned above is the line through the center of the central mass to the .


Circular acceleration
acceleration ( to velocity) causes a change in direction. If it is constant in magnitude and changing in direction with the velocity, ensues. Taking two derivatives of the particle's coordinates concerning time gives the centripetal acceleration

a\, = \frac {v^2} {r} \, = {\omega^2} {r}

where:

The formula is dimensionless, describing a ratio true for all units of measure applied uniformly across the formula. If the numerical value \mathbf{a} is measured in meters per second squared, then the numerical values v\, will be in meters per second, r\, in meters, and \omega \ in radians per second.


Velocity
The speed (or the magnitude of velocity) relative to the centre of mass is constant:
(2025). 9781108411981, Cambridge University Press.
v = \sqrt{ GM\! \over{r}} = \sqrt{\mu\over{r}}
where:
  • G, is the gravitational constant
  • M, is the of both orbiting bodies (M_1+M_2), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.
  • \mu = GM , is the standard gravitational parameter.
  • r is the distance from the center of mass.


Equation of motion
The in polar coordinates, which in general gives r in terms of θ, reduces to:
r=
where:
  • h=rv is specific angular momentum of the orbiting body.

This is because \mu=rv^2


Angular speed and orbital period
\omega^2 r^3=\mu

Hence the (T\,\!) can be computed as:

T=2\pi\sqrt{r^3\over{\mu}}

Compare two proportional quantities, the (time to fall to a point mass from rest)

T_\text{ff}=\frac{\pi}{2\sqrt{2}}\sqrt{r^3\over{\mu}} (17.7% of the orbital period in a circular orbit)

and the time to fall to a point mass in a radial parabolic orbit

T_\text{par}=\frac{\sqrt{2}}{3}\sqrt{r^3\over{\mu}} (7.5% of the orbital period in a circular orbit)

The fact that the formulas only differ by a constant factor is a priori clear from dimensional analysis.


Energy
The specific orbital energy (\epsilon\,) is negative, and
\epsilon=-{v^2\over{2}}
\epsilon=-{\mu\over{2r}}

Thus the applies even without taking a time-average:

  • the kinetic energy of the system is equal to the absolute value of the total energy
  • the potential energy of the system is equal to twice the total energy

The from any distance is times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero.


Delta-v to reach a circular orbit
Maneuvering into a large circular orbit, e.g. a geostationary orbit, requires a larger than an , although the latter implies getting arbitrarily far away and having more energy than needed for the of the circular orbit. It is also a matter of maneuvering into the orbit. See also Hohmann transfer orbit.


Orbital velocity in general relativity
In Schwarzschild metric, the orbital velocity for a circular orbit with radius r is given by the following formula:
v = \sqrt{\frac{GM}{r-r_S}}
where \scriptstyle r_S = \frac{2GM}{c^2} is the Schwarzschild radius of the central body.


Derivation
For the sake of convenience, the derivation will be written in units in which \scriptstyle c=G=1.

The of a body on a circular orbit is given by:

u^\mu = (\dot{t}, 0, 0, \dot{\phi})
(\scriptstyle r is constant on a circular orbit, and the coordinates can be chosen so that \scriptstyle \theta=\frac{\pi}{2}). The dot above a variable denotes derivation with respect to proper time \scriptstyle \tau.

For a massive particle, the components of the satisfy the following equation:

\left(1-\frac{2M}{r}\right) \dot{t}^2 - r^2 \dot{\phi}^2 = 1

We use the geodesic equation:

\ddot{x}^\mu + \Gamma^\mu_{\nu\sigma}\dot{x}^\nu\dot{x}^\sigma = 0
The only nontrivial equation is the one for \scriptstyle \mu = r. It gives:
\frac{M}{r^2}\left(1-\frac{2M}{r}\right)\dot{t}^2 - r\left(1-\frac{2M}{r}\right)\dot{\phi}^2 = 0
From this, we get:
\dot{\phi}^2 = \frac{M}{r^3}\dot{t}^2
Substituting this into the equation for a massive particle gives:
\left(1-\frac{2M}{r}\right) \dot{t}^2 - \frac{M}{r} \dot{t}^2 = 1
Hence:
\dot{t}^2 = \frac{r}{r-3M}

Assume we have an observer at radius \scriptstyle r, who is not moving with respect to the central body, that is, their is proportional to the vector \scriptstyle \partial_t. The normalization condition implies that it is equal to:

v^\mu = \left(\sqrt{\frac{r}{r-2M}},0,0,0\right)
The of the of the observer and the orbiting body equals the gamma factor for the orbiting body relative to the observer, hence:
\gamma = g_{\mu\nu}u^\mu v^\nu = \left(1-\frac{2M}{r}\right) \sqrt{\frac{r}{r-3M}} \sqrt{\frac{r}{r-2M}} = \sqrt{\frac{r-2M}{r-3M}}
This gives the :
v = \sqrt{\frac{M}{r-2M}}
Or, in SI units:
v = \sqrt{\frac{GM}{r-r_S}}


See also

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time